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The Stille cross-coupling reactibis a very powerful method for ~ Table 1. Impact of Reaction Parameters on the Cross-Coupling of
the construction of new carbercarbon bonds that has found appli- ~ Cyclohexyl Bromide with PhSnCls

cation in disciplines ranging from natural-products synthesis (e.qg., 10% Niclz

15% 2,2"-bipyridine

chloropeptin # and apoptolidi?) to materials science (e.g., conduct- O_B' ClsSm=Ph Wzyem)' O‘Ph
ing polymer$). A significant impediment to even more widespread 124UV -BUOH:-BUOH (7:3)
use of this process is the toxicity of triorganotin compounds (R ..stam]j,;"ci‘;df;ons..
SnX)> which are the usual stoichiometric side products of Stille onty variation from the “standard conditons” eld® (%)
reactions. A second practical issue is the difficulty that is often
encountered in separating®hX from the desired cross-coupling % zgnﬁm :?
adduct. A few clever approaches to circumventing these problems 3 10% Pd(OAG) or Pa(dba) [instead of NiC}] <5
have been described, but none has yet found generdl use. 4 10% Ni(cod), NiBra, or NiBr,-diglyme [instead of NiG] 82-86

Of course, one simple way to avoid trialkyltin-related issues is to 2 '1120/20 ’ﬁzﬁggggzmhm”ne linstead of Zpyridine] Z‘Z
employ an organotin coupling partner that does not gener8a)R 7 no KOt-Bu <5
as a side product. In fact, a few groups have reported Stille reactions 8 5.0 equiv of K@-Bu [instead of 7.0 equiv] 55
of monoorganotin compoundsThe tin-based products of SUCh 10 ‘B hnetead ot BuOLL-BLOH I
processes are inorganic species that generally do not suffer from 11 KGi-Bu ini-BuOH [instead of K&-Bu in 61
the purification and toxicity problems common to triorganofins. " S(VJ'SiL‘C‘Z'*;"S%/‘;‘;';]_bipyridme {instead of 10% NiGl o

Recently, we and others have devoted considerable effort to ex- 15% 2,2-bipyridine]
panding the scope of palladium- and nickel-catalyzed coupling reac- 13 room temperature [instead of 60] <5
tions to include unactivateg@-hydrogen-containing alkyl halides aDetermined by GC analysis versus a calibrated internal standard
as partner8 A particularly synthetically useful, although challenging ~ (@verage of two experiments).
(due to slow oxidative addition and facifzhydride elimination), Table 2. Stille Cross-Couplings of Secondary Alkyl Bromides with
objective is the cross-coupling sécondanalkyl halides. To date, Aryltrichlorotin Reagents (eq 1)
progress with this family of substrates has been limited to couplings entry  Raky—Br ClsSn-R yield (%)*
with organozind? -boron!! -silicon 2 and -magnesiutfreagentd? Me
In this communication, we establish that a new family of partners, 1 )—Br  ClsSn 72

organotin compounds, can be cross-coupled with secondary alkyl m-Heptyl

halides (eq 1); monoorganotin reagents are the substrates of choice

o 2 ClgSn 74
for this nickel-catalyzed process.
10% NiClp
Alkyl, 15% 2,2"-bipyridine Alkyl 3
X ClaSn—R ~KorBu 70 squ) 1)
Alkyl . -Bu (7.0 equiv, Alkyl
1.2equiv 4 B,OH:-BUOH (7:3)

X=Br,| R=aryl, alkenyl 60°C 4 <:>—Br ClgSn

Unfortunately, the conditions that had previously been described

ClaSn

<
)

83

47

P PPU Q00

for Negishil® Suzuki! and Hiyam&° couplings of secondary alkyl 5 QBr ClaSn . 67
halides were ineffective for the corresponding Stille reactions.
However, we determined that 10% NI5% 2,2-bipyridine, in Me
the presence of KBBuU, catalyzes the cross-coupling of cyclohexyl 6 wBr ClgSn OMe 68
bromide with PhSnGlin good yield (Table 1, entry 1). Je
Essentially none of the desired carbararbon bond formation is ores
observed in the absence of NjGTable 1, entry 2) or in the pres- 7 <:>—Br ClgSn F 480
ence of a range of palladium complexes (entry 3). Other nickel
complexes can furnish reactivity that is comparable to N{€htry aisolated yield (average of two experimentsLatalyst: 20% NiGY

30% 2,2-bipyridine. The unpurified product was a 9@rans/cis mixture.

4); for the studies described below, we chose to usedN&lice it The reported yield is for the diastereomerically pure trans isomer.

is air-stable and inexpensivé.

If 2,2'-bipyridine is omitted, cross-coupling does not occur (entry leads to a somewhat diminished yield (entry 12), and virtu-
5), and other bipyridine-based ligands that we have explored haveally no cross-coupling is observed at room temperature (entry 13).
proved to be less effective (e.g., entry 6). The stoichiometry af KO NiCl,/2,2-bipyridine catalyzes a range of couplings of secondary
Bu and the solvent have a significant impact on reaction efficiency alkyl bromides with aryltrichlorotin reagents (Table2}hus, both
(entries 7#11)25 from the standpoint of convenience, it is worth  cyclic and acyclic bromides can be cross-coupled with a sterically
noting that commercially available K&Bu in i-BuOH provides a and electronically diverse set of organotin compounds. The same
useful amount of product (entry 11). Decreasing the catalyst loading catalyst system can also be applied directly to Stille reactions of

510 = J. AM. CHEM. SOC. 2005, 127, 510-511 10.1021/ja0436300 CCC: $30.25 © 2005 American Chemical Society
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Table 3. Stille Cross-Couplings of Primary and Secondary Alkyl lowship to D.A.P.), Merck, and Novartis. We thank Luke Fir-

Bromides and lodides with Aryltrichlorotin Reagents (eq 1) mansjah for assistance with X_ray Crysta”ography_

ChSn— o a Supporting Information Available: Experimental procedures and
3Sn—R  yield (%) N ; L h

compound characterization data. This material is available free of charge

via the Internet at http:/pubs.acs.org.

entry

-Bu
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